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Abstract

Connections on a trivial bundleM × G can be identified with their holonomy maps, i.e. with
homomorphisms of a groupoid of paths inM into the gauge groupG. For a connected compactG,
various algebras depending on the setA of the smooth connections through their holonomy maps
have been introduced in the literature, called cylindrical and holonomy algebras. We discuss the
relations between these algebras and the consistence of their spectra.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

In the canonical treatment of Yang–Mills theories and, in general, of gauge theories, the
spaceA/Gau(P ) represents the space of the physical configurations of the system. HereA
denotes the set of the smooth connections on a principal bundleP(M,G) and Gau(P ) the
group of gauge transformations, the base manifoldM is connected andG is a connected
compact Lie group.

A moment of paramount importance in developing the canonical quantization program
for gauge theories invariant under diffeomorphisms, as proposed by Ashtekar et al.[2,3], is
to construct a compactification of the configuration spaceA/Gau(P ). This compactification
A/Gau(P ), called quantum configuration space, is achieved by means of the immersion of
A/Gau(P ) in the spectrum of a suitableC∗-algebra of functions onA/Gau(P ), depending
on holonomies on paths or on loops. To obtain the physical states for the corresponding
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M.C. Abbati, A. Manìa / Journal of Geometry and Physics 44 (2002) 96–114 97

quantum theory, a measureµ on the spectrumA/Gau(P ) is given and diffeomorphism
invariant states are selected in the Hilbert spaceL2(A/Gau(P ), µ). This quantization pro-
cedure is known as the loop quantization and originates from the works of Rovelli and
Smolin[21].

The starting point is the identification of a connectionA with its holonomy mapγ �→
HA(γ ), whereHA(γ ) means the parallel transport along the pathγ ; gauge equivalence
classes of connections are identified with gauge equivalence classes of holonomy maps on
loops[1,17].

Well known examples of gauge invariant functions depending on holonomies are the
Wilson functions, defined—up to a scalar factor—as the mapsA �→ Tr HA(λ), where
λ is a loop. The generatedC∗-algebra is called holonomy algebra and depends on the
differentiability class of loops. In the case thatG is U(n) or SU(n), the Wilson functions
are separating onA/Gau(P ), so thatA/Gau(P ) is densely immersed in the spectrum of
the holonomy algebra.

For a general groupG the Wilson functions are no more separating, so one considers
cylindrical functions, functions of the formA �→ f (HA(γ1), . . . , HA(γn)), for given paths
γ1, . . . , γn. TheC∗-algebra generated by the cylindrical functions is called cylindrical alge-
bra; the invariant cylindrical algebra is also defined. The cylindrical functions are separating
onA so thatA is densely embedded in the spectrum of the cylindrical algebra and, as well,
A/Gau(P ) is densely embedded in the spectrum of the invariant cylindrical algebra.

The case of piecewise analytic loops and paths was the first to be investigated and many
and nice results were obtained (see[4–7,19,20]). It was proved that the spectrum̄A of the
cylindrical algebra agrees with the space Hom(Path(M),G) of the generalized connec-
tions, i.e. homomorphisms intoG of the groupoidPath(M) of piecewise analytic paths.
The spectrumA/Gau(P ) of the invariant analytical cylindrical algebra was proved to agree
with the space Hom(Loop�(M),G)/Ad G of the AdG-equivalence classes of homomor-
phisms intoG of the group of piecewise analytic loops. Measures invariant under analytic
diffeomorphisms have been constructed on this space by projective techniques using fami-
lies of measures labeled by embedded graphs. For the so-called natural measure a complete
orthonormal set of states—the spin network states, depending on embedded graphs—was
constructed and the invariance under analytic diffeomorphisms implemented.

However, the analytic setting is not satisfactory from the physical point of view, since
invariance with respect to smooth diffeomorphisms is needed to use this quantization scheme
for gravity.

In [8], the case of piecewise smoothly immersed paths was approached and the webs
were introduced, special families of paths which play in the smooth immersive setting an
analogous role to that of the embedded graphs in the analytic setting. Like every finite
family of piecewise analytic paths depends on an embedded graph, i.e. every path can be
written as a composition of edges belonging to the graph or of their inverses, so in the
smooth immersive setting every finite family of paths depends on a web. This implies that
the smooth immersive cylindrical algebra Cyl(A) is the limit of the algebras CylW(A)

generated by the cylindrical functions depending on a webW ; dually, the spectrum of the
cylindrical algebra is the projective limit of the spectra of CylW(A). In [9], a diffeomorphism
invariant measure was constructed using projective techniques, spin network states and spin
web states were defined. The theory is quite involved, due to the fact that webs have a more
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involved behavior than graphs and that the spectrum of the cylindrical algebra is not so
simple to be characterized.

In this paper we introduce the cylindrical algebras, the invariant cylindrical algebras and
the Wilson algebras in a general setting and illustrate their relations. These are algebras of
functions defined on a subsetA of Hom(Λ,G), the space of homomorphisms of a general
groupoidΛ into a connected compact Lie groupG. We prove that the spectrum of the
cylindrical algebras is always the closureĀ of A in Hom(Λ,G).

For applications to gauge theoriesΛ is a suitable groupoid of paths. The problem arises
whenĀ = Hom(Λ,G), whereA is the set of connections. In the smooth immersive case
this is true for a connected compact semisimple Lie groupG, as proved in[18], but it is
not true in the non-semisimple case[16]. We characterizēA as a subset of Hom(Λ,G) for
a general connected compact Lie groupG, whereΛ is the groupoid Path(M) of piecewise
smooth immersed paths.

The paper is organized as follows. InSection 2, we introduce the cylindrical algebras
and formulate in various forms the approximation condition, i.e. the condition thatA is
dense in Hom(Λ,G). We consider also the cylindrical algebras invariant under the action
of GM , whereM is the space of units ofΛ and we discuss their spectrum. In this section
we develop and generalize some ideas proposed in[10].

In Section 3, we define the Wilson functions on a subsetA of Hom(Λ,G), whereΛ is
a group. We investigate the spectrum of the generatedC∗-algebra and its relations with the
invariant cylindrical algebras.

In Section 4, we apply the previous results to the holonomy algebras and to the cylindrical
algebras on the spaceA of connections on the trivial bundleM × G. The groupoid is
now Path(M) or Path(M). Also the groupLoop�(M) of piecewise analytic loops or the
group Loop�(M) of piecewise smoothly immersed loops are considered. We discuss the
relationship between the corresponding cylindrical algebras and the consistence of their
spectrum.

In the last section, we discuss cylindrical algebras in the general setting of non-trivial
bundles.

2. Algebras of cylindrical functions

Let we start recalling some well-known results on AbelianC∗-algebras of functions. Let
X be a non-empty set,B(X) the AbelianC∗-algebra of bounded functions onX and let
F ⊂ B(X) aC∗-subalgebra separating onX. The evaluation map associates to everyx ∈ X

the multiplicative functional evx : F → C, evx(f ) = f (x). By the assumption thatF is
separating, the map ev :x �→ evx is an embedding ofX in Spec(F). Moreover,X is dense
in Spec(F) by the normality axiom. Therefore the following proposition holds.

Proposition 1. LetF be anyC∗-subalgebra ofB(X), separating on X. Then X is injectively
and densely embedded inSpec(F) by the evaluation map.

Let X be a compact (Hausdorff) space. IfF is the algebraC(X) of the continuous
functions, the evaluation map is an homeomorphism ofX onto Spec(F).
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For every non-empty subsetY of X, we associate the∗-algebraic homomorphismRY :
C(X) → C(Y ) ∩ B(Y ), RY (F ) = FY , whereFY is the restriction ofF to Y . WhenY is
closed,RY is ontoC(Y ) by Tietze extension theorem; forY ⊂ Z ⊂ X andZ closed, the
range ofRY agrees with the set of restrictions toY of continuous functions onZ. We denote
by F(Y ) theC∗-algebra generated by the range ofRY . WhenȲ = X, the mapRY is an
isometric isomorphism ofC(X) ontoF(Y ) whose inverse is the map which extends each
F ∈ F(Y ) to a continuous function onX. So we have that, for everyY ⊂ X, theC∗-algebra
F(Y ) is naturally isomorphic toC(Ȳ ).

Lemma 1. For everyY ⊂ X, the mapEY : Spec(F(Y )) → X,EY (ϕ) = xϕ , with xϕ

given by

F(xϕ) = ϕ(FY ) ∀F ∈ S ⊂ C(X)

for S separating on X, does not depend onS and is a continuous embedding and a homeo-
morphism ontoȲ .

Proof. The mapEY is the composition ofRt
Y : Spec(F(Y )) → Spec(C(X)) with the

inverse of the evaluation map ev :X → Spec(C(X)). The mapRt
Y is injective, since the

image ofRY is dense inF(Y ) and the evaluation map is a homeomorphism, sinceX is
compact. To prove continuity, recall that the topology onX agrees with thew∗-topology.
Let x̄ = EY (ϕ̄) for a givenϕ̄ ∈ Spec(F(Y )); consider a finite family{Fk}k=1,...,r in C(X)

and the open neighborhood ofx̄

{x ∈ X||Fk(x) − Fk(x̄)| < ε, k = 1, . . . , r}.
Its inverse image byEY is the set

{ϕ ∈ Spec(F(Y ))||ϕ(RYFk) − ϕ̄(RYFk)| < ε, k = 1, . . . , r},
an open set in thew∗-topology. SoEY is continuous, its image is closed and containsȲ ,
sinceEY (evy) = y for everyy ∈ Y .

By Proposition 1, everyϕ ∈ Spec(F(Y )) is the weak limit of some net of pure states
{ϕµ} with ϕµ = evyµ , yµ ∈ Y , henceEY (ϕ) = limµyµ, proving thatEY is ontoȲ .

Finally, we recall that every continuous injection of a compact space into a Hausdorff
topological space is a homeomorphism with its image. �

The condition thatY is dense inX will be calledapproximation condition on Yand is
conveniently stated in the following way:

For everyx ∈ X, every finite family{Fk}k=1,...,r in C(X) andε > 0 there existsy ∈ Y

such that

|Fk(x) − Fk(y)| < ε, k = 1, . . . , r.

The condition can be restated by choosing{Fk}k=1,...,r ⊂ S if S is any separating subset of
C(X).

Now we assume that a compact groupG acts continuously onX. The quotient spaceX/G
is a (Hausdorff) compact space and the canonical projection [ ] :X → X/G is continuous,
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open and closed. TheC∗-algebraCG(X) of theG-invariant continuous functions onX is
identified withC(X/G) by pull-back with the projection. AsX/G is compact,CG(X) is
separating onX/G.

For everyG-invariant subsetY of X we get by simple topological arguments thatȲ is
G-invariant, thatY/G = Ȳ /G and that the mapRY is equivariant. We denote byFG(Y )

theC∗-subalgebra ofG-invariant functions inF(Y ).

Lemma 2. For everyG-invariantY ⊂ X, the mapIY : Spec(FG(Y )) → X/G, IY (ϕ) =
[xϕ ], wherexϕ ∈ X satisfies

F(xϕ) = ϕ(RYF) ∀F ∈ S ⊂ CG(X)

for S separating onX/G, does not depend onS and is a continuous embedding and a
homeomorphism ontoY/G. IY is a homeomorphism ontoX/G if and only if Y satisfies the
approximation condition.

Proof. We identify CG(X) with C(X/G) andFG(Y ) with F(Y/G); then we can apply
Lemma 1toF(Y/G).

For the last statement, we remark thatY/G = Ȳ /G and equalsX/G if and only if Ȳ = X.
This follows easily by theG-invariance ofȲ . �

As an immediate consequence of the previous arguments we obtain the canonical iso-
morphisms

FG(Y ) ≡ CG(Ȳ ) ≡ C(Ȳ /G).

WhenY is G-invariant the approximation condition onY/G can be stated onY/G in terms
of G-invariant functions, as follows:

For everyx ∈ X, every finite family{Fk}k=1,...,r ⊂ CG(X) andε > 0 there existsy ∈ Y

such that

|Fk(x)) − Fk(y)| < ε, k = 1, . . . , r.

The condition can be restated by choosing the functionsFk in any separating subsetS ⊂
CG(X).

More generally, letȲ beG-invariant butY be not necessarilyG-invariant. This can be
true, e.g., if the approximation condition onY holds. Using the isomorphismF(Y ) ≡ C(Ȳ ),
we can again consider the subalgebraFG(Y ) of the functionsF ∈ F(Y ) whose extension
is G-invariant and we have

Spec(FG(Y )) ≡ Ȳ /G.

Now we come to the cylindrical algebras. Let us begin with the definition of groupoid.
A groupoid is a setΛ endowed with a binary composition law satisfying:

i) to everyλ ∈ Λ an elementλ−1 (the inverse) is associated such thatr(λ) = λλ−1 and
s(λ) = λ−1λ exist and are the right and the left unit ofλ, respectively;

ii) for λ, η ∈ Λ the productλη exists if and only ifr(η) = s(λ);
iii) when defined, the product is associative.
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We denote byM(Λ) the set of units ofΛ, i.e. the elements ofΛ of the formλλ−1 for
someλ ∈ Λ. A groupoidΛ is a group if and only ifM(Λ) is a singleton.

Let G denote a closed subgroup ofU(n), the group of unitary matrices in dimensionn.
The set of homomorphismsH : Λ → G, denoted by Hom(Λ,G), is a compact space since
it is closed inGΛ, a compact group in the Tychonoff product topology.

For a continuous functionf : Gm → C and a finite family{λk}k=1,...,m in Λ, the
continuous functionFλ1,...,λm;f : Hom(Λ,G) → C defined by

Fλ1,...,λm;f (H) = f (H(λ1),H(λ2), . . . , H(λm))

is called cylindrical function. The cylindrical functions form a normed∗-algebra
cyl(Hom(Λ,G)), whose completion is aC∗-algebra, denoted by Cyl(Hom(Λ,G)). For
any subsetA of Hom(Λ,G), the∗-algebra of the restrictions toA of the cylindrical func-
tions is denoted by cyl(A) and the completion of cyl(A) by Cyl(A).

For i, j = 1, . . . ,n andλ ∈ Λ, the cylindrical functionΦi,j ;λ defined by

Φi,j ;λ(H) = H(λ)i,j , H ∈ Hom(Λ,G),

whereH(λ)i,j denotes the corresponding matrix elements ofH(λ), will be called repre-
sentative function. The representative functions are separating on Hom(Λ,G), hence their
restrictions are separating on every subsetA. By Proposition 1, the evaluation map is a
dense embedding ofA in Spec(Cyl(A)).

WhenA is closed, the Weierstrass theorem gives Cyl(A) = C(A); as a special case we
have Cyl(Hom(Λ,G)) = C(Hom(Λ,G)). Recalling thatF(A) is theC∗-algebra generated
by the range of the restriction mapRA : C(Hom(Λ,G)) → C(A), we get easily that
F(A) = Cyl(A). As a consequence ofLemma 1we obtain the following theorem.

Theorem 1. For everyA ⊂ Hom(Λ,G), the mapEA : Spec(Cyl(A)) → Hom(Λ,G),
EA(ϕ) = Hϕ , with Hϕ : Λ → G given by

Φi,j ;λ(Hϕ) = ϕ(Φi,j ;λ)

for every representative functionΦi,j ;λ, is a continuous embedding and a homeomorphism
ontoĀ. The mapEA is ontoHom(Λ,G) if and only if the approximation condition onA
is satisfied.

In this setting, the approximation condition onA is conveniently stated in the following
way:

For every H inHom(Λ,G), every finite family{λk}k=1,...,r ⊂ Λ andε > 0, there exists
HA ∈ A such that

‖H(λk) − HA(λk)‖ < ε, k = 1, . . . , r.

The condition can be also restated as follows:
For every H in Hom(Λ,G), every finite system of representative functions

{Φik,jk;λk
}k=1,... ,r andε > 0, there existsHA ∈ A such that

|Φik,jk;λk
(H) − Φik,jk;λk

(HA)| < ε, k = 1, . . . , r.
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The Tychonoff and thew∗-topology agree on Hom(Λ,G). In the first version of the ap-
proximation condition, the density ofA in Hom(Λ,G) is expressed in terms of the usual
basis for the Tychonoff topology, in the second one using a basis for thew∗-topology.

From now on, we denoteM(Λ) shortly byM and consider the natural continuous right
action of the compact groupGM on Hom(Λ,G) given by

(H · g)(λ) = g−1(r(λ))H(λ)g(s(λ)).

The dual isometric action onC(Hom(Λ,G)) is defined bygF(H) = F(H · g−1) for every
H ∈ Hom(Λ,G) andg ∈ GM . For aGM -invariantA ⊂ Hom(Λ,G), we denote by
CylGM (A) theC∗-subalgebra of theGM -invariant functions of Cyl(A).

By Lemma 2, we obtain the following theorem.

Theorem 2. LetAbe aGM -invariant subset ofHom(Λ,G).The mapIA : Spec(CylGM (A))

→ Hom(Λ,G)/GM , IA(ϕ) = [Hϕ ], whereHϕ satisfies

F(Hϕ) = ϕ(RAF) ∀F ∈ S ⊂ CylGM (Hom(Λ,G))

forS separating on(Hom(Λ,G)/GM ,does not depend onSand is a continuous embedding
and a homeomorphism ontōA/GM . The mapIA is ontoHom(Λ,G)/GM if and only if
the approximation condition onA is satisfied.

In the special case thatΛ is a group, the set of units is just{e}, soGM = G and its action
on Hom(Λ,G) is given by(H · a)(λ) = a−1H(λ)a = Ada−1H(λ) for a ∈ G. For any
Ad G-invariantA, we have

Spec(CylAd G(A)) = Spec(Cyl(A))/Ad G = Ā/Ad G.

A natural choice forS in Theorem 2is cylGM (Hom(Λ,G)), the ∗-subalgebra of the
GM -invariant cylindrical functions. Let us show that cylGM (Hom(Λ,G)) is separating
on Hom(Λ,G)/GM .

Theorem 3. Letdg denote the normalized Haar measure onGM .

i) The mean value map〈 〉 : C(Hom(Λ,G)) → CGM (Hom(Λ,G)) defined by

〈F 〉 =
∫
GM

gFdg

restricts to a continuous surjection fromcyl(Hom(Λ,G)) onto the ∗-subalgebra
cylGM (Hom(Λ,G)) of GM -invariant cylindrical functions.

ii) The∗-algebracylGM (Hom(Λ,G)) is separating onHom(Λ,G)/GM .

Proof.

i) The only non-trivial point in the first statement is that the mean value map sends
cyl(Hom(Λ,G)) into cylGM (Hom(Λ,G)). Actually, for every cylindrical function
F = Fλ1,...,λm;f we have

(gF)(H) = f (g(r(λ1))H(λ1)g
−1(s(λ1)), . . . , g(r(λm))H(λm)g−1(s(λm))).
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The elements ofG2m of the form (g(r(λ1)), g(s(λ1)), . . . , g(r(λm)), g(s(λm))) for
someg ∈ GM form a subgroupΓ isomorphic toGd , whered denotes the number of
distinct units inM which are of the formr(λi) ors(λi) for somei = 1, . . . , m. Therefore

〈F 〉(H)

=
∫
GM

f (g(r(λ1))H(λ1)g
−1(s(λ1)), . . . , g(r(λm))H(λm)g−1(s(λm)))dg

=
∫
Γ

(a−1f )(H(λ1), . . . , H(λm))da,

where for a ∈ G2m, a−1f is given by a−1f (g1, . . . , gm) = f (a1g1a
−1
2 , . . . ,

a2m−1gma2m) and da denotes the Haar measure onΓ ≡ Gd . Thus,〈F 〉 is a cylind-
rical function, since〈F 〉 = F

λ1,...,λm;f̃ , wheref̃ , given byf̃ (g1, . . . , gm) = ∫
Γ
(a−1f )

(g1, . . . , gm)da, is continuous.
ii) Let Fn ∈ cyl(Hom(Λ,G)) converge toF ∈ CylGM (Hom(Λ,G)). Then 〈Fn〉 →

〈F 〉 = F , proving that cylGM (Hom(Λ,G)) is dense in CylGM (Hom(Λ,G)). This is
equivalent to say that cylGM (Hom(Λ,G)) is separating. �

Fix a point� in M. The elementsλ of Λ satisfyings(λ) = r(λ) = � form a group,
denoted byΛ�. The restriction map defines a continuous projection

P� : Hom(Λ,G) → Hom(Λ�,G),

which is equivariant w.r.t. the action ofGM ; actually(Hg)� = Adg(�)−1H�, whereH� =
P�(H).

We say thatM is Λ-connected if, for everys, r ∈ M, there existsλ ∈ Λ with s = s(λ)

andr = r(λ). If M is Λ-connected,P� is onto and quotients to a homeomorphism

Q� : Hom(Λ,G)/GM → Hom(Λ�,G)/Ad G.

This is proved following an argument of Velhinho[23]. Let GM
� the compact subgroup

of mapsg ∈ GM such thatg(�) = 1. For everyx ∈ M, we fix a uniqueex ∈ Λ with
s(ex) = � and r(ex) = x, choosinge� = �. To everyH we associategH ∈ GM

� by
defininggH (x) = H(ex). The map

Θ : Hom(Λ,G) → Hom(Λ�,G) × GM
� , H �→ (H�, gH )

is a homeomorphism. Actually,P� is onto since forh ∈ Hom(Λ�,G) we defineH ∈
Hom(Λ,G) such thatH� = h byH(λ) = h(e−1

r(λ)λes(λ)). The mapΘ is continuous and it is

onto since, for everyH ∈ Hom(Λ,G) andg ∈ GM
� , we haveΘ(H · (gHg−1)) = (H�, g).

The inverse is defined by(H�, g) �→ H ′ · (gH ′g−1) for anyH ′ such thatP�(H ′) = H�.
A continuous action ofGM on Hom(Λ�,G) × GM

� is given by

(H�, g′) · g = (Adg−1(�)H�, Rg(g
′)),

whereRg(g
′)(x) = g(x)−1g′(x)g(�). It is clear thatΘ quotients to the wanted homeo-

morphismQ�.
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If A is GM -invariant, thenA� = P�(A) is AdG-invariant; the restriction ofQ� is a
homeomorphism ofA/GM ontoA�/Ad G and, obviously, ofA/GM ontoA�/Ad G. By
duality we obtain the isomorphism

CylGM (A) ≡ CylAd G(A�).

If the approximation condition onA is satisfied, we get

Spec(CylGM (A)) ≡ Hom(Λ�,G)/Ad G.

We take now into account the case thatĀ is GM -invariant butA is not necessarilyGM -
invariant.

Theorem 4. If Ā is GM -invariant andA� is Ad G-invariant, then

Spec(CylGM (A)) ≡ Ā/GM ≡ A�/Ad G ≡ Spec(CylAd G(A�)),

whereCylGM (A) denotes theC∗-algebra of restrictions toA of functions inCylGM (Ā).
Moreover, Ā� = Hom(Λ�,G) if and only ifĀ = Hom(Λ,G).

Proof. By definition, CylGM (A) is isomorphic to CylGM (Ā) whose spectrum is̄A/GM ,
since Ā is GM -invariant. The restriction ofQ� to Ā/GM is a homeomorphism onto
(Ā)�/Ad G. By continuity ofP�, the set(Ā)� is closed, hence the relationA� ⊂ (Ā)� ⊂
Ā� implies that(Ā)� = Ā�. Moreover, the AdG-invariance ofA� givesĀ�/Ad G =
A�/Ad G. Hence we haveQ�(Ā/GM) = A�/Ad G.

To prove the second statement, letĀ� = Hom(Λ�,G). This is equivalent tōA�/Ad G =
(Ā)�/Ad G = Hom(Λ�,G)/Ad G. By the homeomorphismQ� we obtainĀ/GM =
Hom(Λ,G)/GM . TheGM -invariance ofĀ givesĀ = Hom(Λ,G). �

3. The Wilson algebras

In this sectionΛ will be a group andG a closed subgroup ofU(n). To everyλ ∈ Λ we
associate the cylindrical mapTλ on Hom(Λ,G) defined by

Tλ(H) = 1

n
Tr(H(λ)).

These functions are called Wilson functions. To everyA ⊂ Hom(Λ,G) we associate the
WilsonC∗-algebra ofA, denoted byHA, which is theC∗-algebra generated by the Wilson
functions restricted toA.

If H,H ′ ∈ Hom(Λ,G) are equivalent representations ofΛ we haveTλ(H) = Tλ(H
′)

for everyλ ∈ Λ. Besides, it is well known that equivalent homomorphisms of any group
in U(n) are unitarily equivalent. So we consider the quotient of Hom(Λ,G) by unitary
equivalence. ForH ∈ Hom(Λ,G) we denote byĤ its unitary equivalence class and byÂ
the set of unitary equivalence classes of homomorphisms inA.

The Wilson functions are separating on̂Hom(Λ,G), as follows from the next proposition.
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Proposition 2. LetΛ be a group, H andH ′ in Hom(Λ,G). If Tλ(H) = Tλ(H
′) for every

λ ∈ Λ, then H andH ′ are unitarily equivalent.

Proof. To begin with, let us consider a topological groupΛ and continuous homomor-
phisms. We recall that there exists a compact (Hausdorff) group Cpt(Λ), called the as-
sociated compact group ofΛ, and a homomorphismκ : Λ → Cpt(Λ) with dense
range such that the following universality property holds: to anyG-valued continuous
representationH of Λ one can associate a unique representationK : Cpt(Λ) → G,
such thatH = K ◦ κ (see, e.g.[12]). By density ofκ(Λ) in Cpt(Λ), the equality
Tλ(H) = Tλ(H

′) for everyλ ∈ Λ implies that Tr(K(ξ)) = Tr(K ′(ξ)), for everyξ ∈
Cpt(Λ). By a well-known theorem on the representations of compact groups (see, e.g.
[11]) K andK ′ are equivalent. This implies thatH andH ′ are equivalent, hence unitarily
equivalent.

If no topology is assumed onΛ, we giveΛ the topology induced by all homomorphisms
H : Λ → G, so thatΛ becomes a topological group andH andH ′ continuous represen-
tations. Therefore, we are reduced to the previous case. �

Proposition 2assures thatHA is separating on̂A, henceÂ is densely embedded in
Spec(HA). To characterize Spec(HA) it is convenient to considerA as a subset of Hom(Λ,

U(n)) and identifyÂ with the subset of Hom(Λ,U(n))/Ad U(n) obtained by applying to
A the projection̂ : Hom(Λ,U(n)) → Hom(Λ,U(n))/Ad U(n). The Wilson functions
are separating on Hom(Λ,U(n))/Ad U(n), so they generate the algebra of continuous
functions on Hom(Λ,U(n))/Ad U(n). Then, byLemma 1, Spec(HA) is homeomorphic to
the closure ofÂ in Hom(Λ,U(n))/Ad U(n).

Wilson functions become relevant in gauge theories whenA is AdG-invariant andÂ =
A/Ad G. To obtain this identification we have to specialize the groupG. One can assume that
for everya ∈ G there existλ ∈ Λ andH ∈ A such thata = H(λ). This is always satisfied
in the cases arising in gauge theories. Under this assumption, the conditionÂ = A/Ad G

implies thatG is a normal subgroup ofU(n).
Conversely, if a groupG is a closed normal subgroup ofU(n), one getŝHom(Λ,G) =

Hom(Λ,G)/Ad G. This is a consequence of the following proposition.

Proposition 3. Let G a closed normal subgroup ofU(n). Then the conjugation classes
w.r.t. AdU(n) andAdG coincide on G.

Proof. The smooth group homomorphismΦ : U(1) × SU(n) → U(n),Φ(α, S) = αS, is
onto since, forU ∈ U(n), Φ(δ, δ−1U) = U for everyδ ∈ U(1) such thatδn = det(U).
As G is a closed normal subgroup ofU(n), then G̃ = Φ−1(G) is a compact normal
subgroup ofU(1) × SU(n). Therefore,πs(G̃) is a compact normal subgroup of SU(n),
whereπs : U(1) × SU(n) → SU(n) is the canonical projection. As SU(n) is simple,
compact and connected, we have two cases:

i) πs(G̃) = SU(n);
ii) πs(G̃) is a (finite) central subgroup of SU(n).

We discuss separately these cases.
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i) Let U ∈ U(n) of the formU = αS with α ∈ U(1) andS ∈ SU(n). By assumption i),
there exists(β, S) ∈ G̃, for someβ ∈ U(1), so thath = βS belongs toG. For every
V ∈ U(n) we have AdUV = AdSV = AdhV .

ii) If πs(G̃) is a central subgroup of SU(n), then G̃ is a central subgroup ofU(1) ×
SU(n), so thatG is a central subgroup ofU(n). Thus, the adjoint actions onG are both
trivial. �

Then, letG be a closed normal subgroup ofU(n). The Wilson functions become a sep-
arating set of cylindrical functions on Hom(Λ,G)/Ad G = Ĥom(Λ,G), so they generate
the algebraCAd G(Hom(Λ,G)). For every AdG-invariant subsetA of Hom(Λ,G), we
haveÂ = A/Ad G andHA = CylAd G(A).

The density ofÂ in Ĥom(Λ,G) is assured by theWilson approximation condition on
A, formulated as follows:

For every H inHom(Λ,G), every finite family{λk}k=1,...,r of Λ andε > 0, there exists
HA ∈ A such that

|Tr H(λk) − Tr HA(λk)| < ε, k = 1, . . . , r.

Thus, we have obtained the following theorem.

Theorem 5. Let Λ be a group, G a closed normal subgroup ofU(n) and A an
Ad G-invariant subset ofHom(Λ,G). Then:

i) HA agrees withCylAd G(A);
ii) the mapIA : Spec(HA) → Ĥom(Λ,G), IA(ϕ) = [Hϕ ], whereHϕ satisfies

ϕ(Tλ) = 1

n
Tr Hϕ(λ), λ ∈ Λ

is a homeomorphism onto the closure ofÂ in Ĥom(Λ,G);
iii) the embeddingIA is ontoĤom(Λ,G) if and only if the Wilson approximation condition

is satisfied.

4. Application to gauge theories

Now we discuss the applications to gauge theories of the statements proved in the above
sections.

LetM be a connected, orientable paracompact smooth manifold with dim(M) > 1. Then
M admits a compatible real analytic structure, which is unique up to diffeomorphisms.

We will start considering continuous piecewise smooth (or piecewise analytic) parametrized
paths and loopsγ : [0,1] → M. Pathsγ andλ with γ (1) = λ(0) can be composed to get
λγ : [0,1] → M defined by

(λγ )(t) =
{

γ (2t) if 0 ≤ t < 1
2,

λ(2t − 1) if 1
2 ≤ t ≤ 1.

The inverseγ−1 is defined byγ−1(t) = γ (1 − t).
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By immediate retracing we mean a parametrized piecewise smooth pathγ which factor-
izes as

γ =
k∏
i

(γiγ
−1
i ).

Equivalence of piecewise smooth (or analytic) parametrized paths w.r.t. order preserving
piecewise smooth (or piecewise analytic) reparametrizations and up to immediate retracings
will be called elementary equivalence. A piecewise smooth (analytic) path is an elemen-
tary equivalence class of piecewise smooth (piecewise analytic) parametrized paths. For
applications to gauge theories it is convenient to consider just paths which are piecewise
smoothly immersed or constant. Paths can be composed and inverted, and form a groupoid,
denoted byPath(M) in the piecewise analytic case and by Path(M) in the piecewise smooth
immersive case. Obviously, one could also consider weaker differentiability conditions on
paths and more general groupoids, as in[14,15].

Fix a base point� in M. A piecewise smooth (analytic) loop based on� is an elementary
equivalence class of piecewise smooth (analytic) parametrized pathsγ with γ (0) = γ (1) =
�. Loops based on� form a group, denoted byLoop�(M) in the analytic case and by
Loop�(M) in the smooth immersive case. The unit is the constant loop, also denoted by�.
If the base points are changed, one obtains isomorphic groups.

Let us consider now the trivial bundleM × G, whereG is a connected closed subgroup
of U(n). For a smooth connectionA onM × G, the holonomy mapHA is defined, which
associates to a pathλ the parallel transport alongλ, identified with an elementHA(λ) of G.
We can identify the setA of smooth connections with the set of their associated holonomy
maps onPath(M), on Path(M) [17] or even on more general groupoids.

Connections induce another equivalence relation on parametrized paths (of any class),
calledholonomy equivalence, where parametrized pathsλ andλ′ are holonomy equivalent
if

λ′(0) = λ(0), λ′(1) = λ(1) and HA(λ′λ−1) = e ∀A ∈ A.

The holonomy equivalence depends, in principle, onG and is weaker than elementary
equivalence. For every connected non-solvable compact (hence non-Abelian) Lie groupG,
the holonomy equivalence agrees with elementary equivalence in the analytic and in the
smooth immersive case[18,22]. In the smooth non-immersive case this is no longer true:
a simple example of a smooth loop giving a non-trivial elementary equivalence class, but
with trivial holonomies for anyG, has been given in[14].

ForG = T n, a torus in dimensionn, n ≥ 1, the two equivalence relations are different.
However, the holonomy equivalence does not depend onn. In the Abelian case, the group
Loop�(M)quotients to a group, we will denote by Hoop�(M), since holonomy equivalence
classes of loops were first introduced in[4] and called hoops. Holonomy equivalence classes
of paths in Path(M) form a groupoid, which we analogously denote by Hath(M).

The group of gauge transformations is the group Gau= C∞(M,G), acting onA by
A ·g = g−1Ag+g−1 dg, where d denotes the exterior derivative. The corresponding action
on parallel transports is given by

HA·g(γ ) = g(γ (1))−1HA(γ )g(γ (0)), γ ∈ Path(M),



108 M.C. Abbati, A. Manìa / Journal of Geometry and Physics 44 (2002) 96–114

and is the restriction to Gau of the action ofGM . Of courseA is notGM -invariant however;
its Gau-invariance implies thatA� is AdG-invariant. Since Gau is dense inGM and the
action ofGM on Hom(Path(M),G) is continuous, the Gau-invariance ofA implies the
GM -invariance ofĀ. We recall that every functionf in Cyl(A) can be uniquely extended to
a continuous function on̄A, which isGM -invariant iff is Gau-invariant. As a consequence,
CylGau(A) = CylGM (A), in the notations ofTheorem 4.

The projectionP� : Hom(Path(M),G) → Hom(Loop�(M),G)quotients to a bijection

A/Gau↔ A�/Ad G

(see[1]). Analogous statements can be done usingPath(M) andLoop�(M) and also for
the weaker differentiability conditions on paths.

In the non-perturbative quantization program, a standing point is to give a compacti-
fication of the configuration spaceA/Gau, i.e. to embed the configuration space in the
spectrum of some AdG-invariant cylindrical algebra onA�. A compactification ofA can
be achieved by the embedding in the spectrum of the cylindrical algebra ofA. One is
interested in studying the consistence of these compactifications.

4.1. The analytic case

In the analytic caseA is viewed as a subset of Hom(Path(M),G). To distinguish this
case from the smooth one, we will denote byCyl(A) the analytic cylindrical algebra and
by Hol(A�) the analytic holonomy algebra, i.e. the WilsonC∗-algebra ofA�.

In this setting, the following strong version of the approximation condition onA is
assured:

For every finite set of paths{γk}k=1,...,r and every homomorphismH : Path(M) → G

there exists a smooth connection A onM × G such that

H(γk) = HA(γk), k = 1, . . . , r.

The property has been proved in[4] for γk ∈ Loop�(M) (see also[22]) and the proof
extends easily toγk ∈ Path(M). Owing toTheorem 1we can conclude that

Spec(Cyl(A)) ≡ Ā = Hom(Path(M),G).

As a consequence, we obtain that

Spec(CylGau(A)) ≡ Hom(Loop�(M),G)/Ad G ≡ A/Gau.

In the special case thatG is a closed normal subgroup ofU(n), the unitary equivalence
classes ofG-valued homomorphisms agree with their conjugation classes, so thatA/Gau≡
Â� = A�/Ad G. By Theorem 5we get

Spec(Hol(A�)) ≡ Ĥom(Loop�(M),G) = A/Gau.

Dually, we have that

Hol(A�) = CylAd G(A�) ≡ CylGau(A).
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However, the analytic case is not really satisfactory from the physical point of view, since for
applications to the loop quantum gravity one needs to consider diffeomorphism invariance
on the closure ofA/Gau whileLoop�(M) is invariant only w.r.t. analytic diffeomorphisms.

4.2. The Abelian smooth immersive case

Ashtekar and Lewandowski[4] studied the case ofG = U(1), working in the piecewise
C1 setting. They denoted byHG the group of hoops obtained by the holonomy equiv-
alence classes of piecewiseC1 loops based on� and considered in the compact space
Hom(HG, U(1)) the subsetA� obtained by the holonomy maps of the smooth connec-
tions. They proved that

Ā� = Hom(HG, U(1)).

Their proof works also in the case of a general torusT n in any dimensionn and for every
differentiability class of loops and hoops. It works also in the smooth immersive category,
when the groupHG is replaced by the group Hoop�(M), so that

Ā� = Hom(Hoop�(M), T n).

Let us consider the smooth connectionsA as a subset of Hom(Hath(M), T n). The gauge
invariance ofA implies theGM -invariance ofĀ. Moreover,A� is AdG-invariant. By the
last statement inTheorem 4we obtain that

Ā = Hom(Hath(M), T n),

and byA/Gau≡ A� we have

A/Gau≡ Hom(Hoop�(M), T n).

The above quoted result allows one to characterize also the closure ofA in the space
Hom(Path(M), T n): we can identify Hom(Hath(M), T n) with the closed subgroup of
Hom(Path(M), T n), consisting of the homomorphisms which are constant on each holon-
omy equivalence class of paths, obtaining

Ā = Hom(Hath(M), T n) ⊂ Hom(Path(M), T n).

Fleischhack[13] proves that̄A is a proper subset in Hom(Path(M), T n). Analogously, one
recognizes that Hom(Hoop�(M), T n) is a closed proper subgroup of Hom(Loop�(M), T n)

and agrees with the closure ofA� in Hom(Loop�(M), T n).
In contrast, in the analytic case it is well known[22] that the groupHoop�(M) is

the quotient ofLoop�(M) by its commutator group, so that Hom(Loop�(M), T n) ≡
Hom(Hoop�(M), T n) and, analogously, Hom(Path(M), T n) ≡ Hom(Hath(M), T n).

4.3. The general smooth immersive case

Our aim is to characterize the closure ofA in the smooth immersive case for a connected
compact Lie groupG. Fleischhack[13] has proved thatA is dense in Hom(Path(M),G)only
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for connected and semisimpleG. The same author will discuss denseness of connections
in the non-immersive case and for more general categories of immersive paths in[16].

The spacēA was investigated in the smooth immersive case for any connected compact
Lie groupG by Baez and Sawin[8]. They associate to every finite-ordered familyC =
(c1, . . . , cr ) of piecewise immersed or constant paths the mappC : A → Gr , HC(A) =
(Hc1(A), . . . , Hcr (A))and studied its rangeAC . They found special families of independent
paths, the webs, for which this range can be characterized. We recall that a familyC of
paths is said to be independent if a pathλ in C cannot be decomposed using other paths
in C or their inverses. A familyC depends on another familyC′ if every path inC can be
obtained from paths inC′ or their inverses by using the path composition.

The definition of a web is quite involved and we refer to the quoted authors. Their main
result is that every finite familyC of paths depends on a web. Moreover, it was proved in
[18] (see also[22]) that if G is semisimple, for every webW the rangeAW is exactlyGr ,
wherer is the cardinality ofW .

Joining the above results one obtains that

Ā = Hom(Path(M),G)

for every connected compact semisimple Lie groupG.
Let nowGbe isomorphic to the product of a torusT n and a connected compact semisimple

Lie groupS. Then one obtains that

Hom(Path(M),G) = Hom(Path(M), T n) × Hom(Path(M), S),

and that

Hom(Loop�(M),G)/Ad G = Hom(Loop�(M), T n) × Hom(Loop�(M), S)/Ad S.

The Lie algebrag splits asg = Rn + s, so that a connectionA onM × G can be identified
with a coupleAT n andAS of 1-forms onM taking values in the Lie algebrasRn and
s of T n andS, respectively. It follows from the definition of path-ordered integral that
HA(λ) = HATn (λ)HAS

(λ) for everyλ ∈ Path(M).

Theorem 6. LetG = T n ×S the product of a torusT n and a connected compact semisim-
ple Lie group S. The closure of the setA in Hom(Path(M),G) is Hom(Hath(M), T n) ×
Hom(Path(M), S). The closure ofA/Gauin Hom(Loop�(M),G)/Ad G is Hom(Hoop�

(M), T n) × Hom(Loop�(M), S)/Ad S.

Proof. This is an immediate consequence of the above remarks and of the results in the
Abelian and the semisimple cases, respectively. �

Let us recall that every compact-connected Lie groupG is of the form(T0×S)/K, where
T0 is the identity component of the center ofG, S a connected compact semisimple Lie
group andK a finite group contained in the center ofT0 × S. By the general theory of
compact Abelian Lie groups,T0 is trivial or it is a torus. We denote bypK the projection
T0 × S → G and by(pK)∗ : Hom(Path(M), T0 × S) → Hom(Path(M),G) the map
defined by(pK)∗(H) = pK ◦ H .
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The case whereT0 is a torus is discussed in the following theorem.

Theorem 7. LetG be a compact-connected Lie group represented in the formG = (T n ×
S)/K, as above. The closure ofA in Hom(Path(M),G) is (pK)∗(Hom(Hath(M), T n) ×
Hom(Path(M), S)). The closure ofA/Gauin Hom(Loop�(M),G)/Ad G is (pK)∗(Hom
(Hoop�(M), T n) × Hom(Loop�(M), S))/Ad S).

Proof. The commutative diagram holds:

B → Hom(Path(M), T n × S)

↓ (pK)∗ ↓ (pK)∗
A → Hom(Path(M),G),

whereB denotes the space of holonomies of smooth connections onM × (T n × S). Since
the Lie algebrasRn + s andg are isomorphic, the bundlesM × (T n × S) andM × G have
isomorphic connection 1-forms, hence(pK)∗(B) = A.

The map (pK)∗ is continuous in the Tychonoff topologies and is closed, since
Hom(Path(M), T n × S) is compact. Therefore,(pK)∗(B̄) = (pK)∗(B) = Ā. Then we
useTheorem 6.

To prove the second statement, we have to apply analogous arguments to the diagram

B�/Ad S → Hom(Loop�(M), T n × S)/Ad S

↓ (pK)∗ ↓ (pK)∗
A�/Ad G → Hom(Loop�(M),G)/Ad G.

The only non-trivial point to prove is that the (quotiented) projection(pK)∗ : B�/Ad S →
A�/Ad G is onto. This follows immediately by(pK)∗(B�) = A�. �

We can characterize the spectra of the smooth immersive cylindrical algebras Cyl(A)

and CylGau(A) and of the smooth immersive holonomy algebra Hol(A�).
For a semisimple connected compact Lie groupG we have

Spec(Cyl(A)) ≡ Ā = Hom(Path(M),G),

and

Spec(CylGau(A)) ≡ A/Gau= Hom(Loop�(M),G)/Ad G.

In the special case thatG is a normal subgroup ofU(n), e.g., ifG is SU(n), n > 1, we
identify Hol(A�) with CylGau(A) and we have

Spec(Hol(A�)) ≡ A/Gau= Ĥom(Loop�(M),G).

ForG = T n × S, with semisimpleS, we have

Spec(Cyl(A)) = Hom(Hath(M), T n) × Hom(Path(M), S),
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and

Spec(CylGau(A)) = Hom(Hoop�(M), T n) × Hom(Loop�(M), S)/AdS.

Finally, forG = (T n × S)/K, as above, we have

Spec(Cyl(A)) = (pK)∗(Hom(Hath(M), T n) × Hom(Path(M), S)),

and

Spec(CylGau(A)) = (pK)∗(Hom(Hoop�(M), T n) × Hom(Loop�(M), S)/AdS).

5. Non-trivial bundles

We will extend the above results to the general case thatA is the set of smooth connections
of a non-trivial principal bundleP(M,G).

For x, y ∈ M we denote by Eq(Px, Py) the space of theG-equivariant maps from
the fiberPx to the fiberPy . This space consists of invertible maps and every choice of
ux ∈ Px anduy ∈ Py defines a bijection of Eq(Px, Py) ontoG, so Eq(Px, Py) becomes a
compact space whose topology does not depend on the choice. The disjoint union Eq(P ) =
�x,y∈M Eq(Px, Py) is a groupoid, sinceφy,x ∈ Eq(Px, Py) andφy′,x′ ∈ Eq(Px′ , Py′) can
be composed ify = x′.

Let we denote byΛ any of the groupoids of paths previously introduced and con-
sider the space Hom(Λ,Eq(P )) of groupoid homomorphisms ofΛ in Eq(P ). The space
Hom(Λ,Eq(P )) is compact as a closed subset of the product

∏
λ∈Λ Eq(Ps(λ), Pr(λ)), which

is compact in the Tychonoff topology.
We fix a point � in M and introduce the compact spaceE� of the mapsη ∈∏
x∈M Eq(P�, Px) satisfyingη(�) = id. For everyx ∈ M, we fix a pathex ∈ Λ with

s(ex) = � andr(ex) = x, choosinge� = �. To everyH ∈ Hom(Λ,Eq(P )) we associate
the elementηH ∈ E� given byηH (x) = H(ex).

Fixed a pointu� in P�, we identify the group Eq(P�, P�) with the groupG and de-
fine the mapP� : Hom(Λ,Eq(P )) → Hom(Λ�,G) which associates to eachH ∈
Hom(Λ,Eq(P )) its restriction toΛ�.

As in Section 2, the mapH �→ (P�(H), ηH ) is a homeomorphism

Θ : Hom(Λ,Eq(P )) → Hom(Λ�,G) × E�.

Let us recall that Gau(P ) is the group of the smooth sections of the fiber bundle
�x∈MEq(Px, Px) → M, with fiberG. Gau(P ) is dense in the groupGau(P ) of all sections
of this bundle, a compact group isomorphic toGM (see[5]).

Actions of Gau(P ) on Hom(Λ,Eq(P )), on Hom(Λ�,G) and onE� are defined as
follows:

(Hφ)(λ) = φ(r(λ))−1H(λ)φ(s(λ)), H ∈ Hom(Λ,Eq(P )),

(H�φ)(γ ) = Adφ(�)−1H�(γ ), H� ∈ Hom(Λ�,G),

(ηφ)(x) = φ−1(x)η(x)φ(�), η ∈ E�
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for everyφ ∈ Gau(P ). The mapΘ is equivariant and quotients to a homeomorphism of
Hom(Λ,Eq(P ))/Gau(P ) onto Hom(Λ�,G)/Ad G.

Cylindrical functions and algebras can be treated for the spaceA of connections on a gen-
eral bundle. A cylindrical function is a function of the formFλ1,... ,λr ;f (A) = f (HA(λ1), . . . ,

HA(λr)), wheref is a continuous function on the compact space Eq(Ps(λ1), Pr(λ1))×· · ·×
Eq(Ps(λr ), Pr(λr )).

Analogous embedding results to the ones given inSections 2 and 3can be easily worked
out for the spectrum of these cylindrical algebras. Analogous to the trivial case, we obtain

Spec(Cyl(A)) ≡ Ā ⊂ Hom(Λ,Eq(P )),

and

Spec(CylGau(P )(A)) ≡ A/Gau(P ) ⊂ Hom(Λ�,Eq(P ))/Ad G.

For the groupsU(n) or SU(n) we have that

Hol(A�) = CylGau(P )(A),

and that

Spec(Hol(A�)) ≡ A/Gau(P ) ⊂ Hom(Λ�,Eq(P ))/Ad G.

However, the concrete characterization of the closure ofA in the non-trivial case remains an
open problem. In the analytic case, the approximation condition onA is proved for anyG
(see, e.g.[22]). In the smooth immersive case, the approximation condition can be proved
for a semisimple groupG using the fact that webs are decomposed in tassels, each contained
in some trivializing neighborhood, as in the proof of Proposition 2 in[8].

The results obtained in the Abelian non-analytic case are difficult to be generalized to
non-trivial bundles, since hoops are not local. Ashtekar and Lewandowski[4] proved that
Ā� = Hom(HG, U(1)) for the Hopf bundle and its pullbacks.
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